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Abstract
In this paper we show how a pronunciation quality measure can
be improved by making use of information on frequent pronun-
ciation errors made by non-native speakers. We propose a new
measure, called weighted Goodness of Pronunciation (wGOP),
and compare it to the much used GOP measure. We applied
this measure to the task of discriminating correctly from incor-
rectly realized Dutch vowels produced by non-native speakers
and observed a substantial increase in performance when suffi-
cient training material is available.
Index Terms: pronunciation error detection, computer-assisted
language learning, confidence measures, weighted GOP

1. Introduction
Adult second language (L2) learners are known to experience
difficulties in learning to pronounce the sounds of an L2 (see [1]
for reviews). The majority of L2 learners never acquire native-
like performance and many of them have problems even in at-
taining a level of comfortably intelligible speech. An important
limiting factor in acquiring the pronunciation of an L2 is con-
sidered to be the phonology of the mother tongue (L1).

Theories that attempt to explain L1-L2 interference in
speech perception and production are based on the tenet that
the perceptual salience of phonetic detail becomes tied to the
distinctions that are relevant in L1 [2] [3]. This form of L1 en-
trenchment leads to “deafness” to phonetic distinctions in the
L2 and causes difficulties in learning to perceive and produce
L2 speech sounds. However, the positive finding is that new
distinctions in an L2 can be learned, but this requires intensive
feedback [4] [5].

Since in general it is not possible to offer intensive feed-
back on pronunciation in L2 classrooms, there is growing inter-
est for Computer Assisted Pronunciation Training systems that
make use of automatic speech recognition to provide feedback
on pronunciation. This is also the aim of our DISCO project
[6]. An important requirement for such systems is that pronun-
ciation errors are reliably detected. For this purpose various
measures of pronunciation quality have been developed [7] [8].
Although in general acceptable levels of performance can be
achieved with these measures, it is our impression that better
performance could be achieved by using pronunciation quality
measures that take more account of the specific pronunciation
errors that are made in the L2. More specifically, the research
reported on in this paper evaluates a newly developed pronun-
ciation quality measure on a set of Dutch vowels spoken by L2
learners.

In this paper we first provide a brief overview of the most
used pronunciation quality measures and try to explain how
such measures could be made more sensitive to error patterns
(Section 2). We then go on to describe the case of vowel pro-
nunciation error detection in Dutch (Section 3). In the following

sections we report on experiments in which the performance of
our new measure is compared to the much used GOP measure
introduced in [7].

2. Pronunciation Quality Measures
Most pronunciation quality measures are segmental confidence
measures. These confidence measures try to estimate the poste-
rior probability of a phone:

P(p|O) =
P(O|p)P(p)

P(O)
(1)

where p is the target phoneme and O the observation ma-
trix. If this confidence measure is below a certain predefined
threshold the phone is flagged as incorrectly realized. One well
known instantiation of this notion is the Goodness of Pronun-
ciation (GOP) algorithm [7] in which conditional probabilities
are calculated using Hidden Markov Models (HMM) trained on
native speech material.

In the applications of this algorithm an equal prior distri-
bution is often assumed and the denominator P(O) is approx-
imated by calculating the likelihood of the most likely phone
sequence in the specific segment. In addition, transforming to a
log scale and normalizing by phone duration dur yields [7]:

GOP (p) =
log{P(O|p)} −maxi log{P(O|pi)}

dur
(2)

The decision of accepting or rejecting the phone as a correct
pronunciation of the target phoneme is made by simple thresh-
olding, which is determined separately for each target phoneme.
This threshold can be calibrated on real non-native speech ma-
terial or native material in which artificial errors have been in-
troduced [9].

In [8] the posterior probability is estimated by:

P(p|O) =
P(O|p)P(p)∑N
i P(O|pi)P(pi)

(3)

where the summation in the denominator runs over all N
phonemes. The priors P(p) and P(pi) represent the prior prob-
ability of the specific phoneme estimated from native speech
material. Other approaches to pronunciation verification in-
volve discriminative training methods such as Support Vector
Machines [10] in which the posterior probability is estimated
directly.

The research presented in this paper is grounded in the gen-
erative modeling approaches taken in [7] and [8]. We have
found that the GOP scoring algorithm has difficulties in detect-
ing errors in target phonemes with multiple acoustically close
“neighbouring” phonemes. This is specifically the case in the
Dutch vowel system, as explained in more detail in the next
section. These difficulties are mainly caused by the fact that
the denominator in Eq. 2 only takes into account the maximum
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likelihood phone sequence, which might be an underestimation
if there is more than one competing phoneme. In Eq. 3 this
problem does not arise, but we think that weighting the likeli-
hoods of competing phonemes P(O|pi) based on how impor-
tant they are for predicting an error in the target phoneme might
improve this measure.

Therefore, we propose to combine multiple likelihood ra-
tios from the target phoneme with all competitor phonemes in
a logistic regression model. This regression model is trained on
manually annotated non-native speech material. The measure,
which we call weighted GOP (wGOP) is explained in more de-
tail in Section 5.2.

3. Dutch Vowel System
The Dutch vowel inventory is relatively complex: it contains
thirteen monophthongs, three diphthongs, and some additional
vowels found mainly in loan words [11] [12] (see Fig. 1 for
a vowel chart, SAMPA [13] is used in the current paper). In
addition, there are relatively many vowels in the mid-to-high,
front-central area of the vowel space:

• /I/ (as in /bIt/,“bid”; “pray”)
• /Y/ (as in /pYt/, “put”; “well”)
• /y/ (as in /byr/, “buur”; “neighbour”)
• /2:/ (as in /l2:k/, “leuk”; “nice”)
• /e:/ (as in /be:t/, “beet”; “bite”)

Research has shown that in the case of Dutch, vowels pose
particular problems to L2 learners [14]. The difficulties expe-
rienced by Dutch L2 learners in perceiving Dutch vowels do
indeed appear to be connected to the relationship between the
Dutch vowel system and that of their mother tongue [5], in the
sense that L2 learners find it difficult to distinguish vowels that
differ along dimensions that are not relevant in their mother
tongue. New distinctions can however be learned if intensive
feedback is provided [5].

With respect to production there is a compounding problem,
because acoustic similarity is not the only influencing factor,
orthography also plays a role in the sense that the orthography
of the mother tongue is going to interfere with the way Dutch
vowels are pronounced [14]. Moreover, in Dutch orthography
the same grapheme is sometimes used to indicate two different
phonemes, which might cause extra confusions.

Automatic classification of Dutch vowels produced by non-
natives turned out be less successful than classification of vow-
els produced by native speakers [15]. Because of its characteris-
tics — relatively many vowels with concentrations in a specific
area of the vowel space — the Dutch vowel system is partic-
ularly suited to test the effectiveness of our newly developed
pronunciation quality measure.

4. Material
The non-native speech material for the present experiments was
taken from the JASMIN speech corpus [16].This material was
recorded from speakers of many different mother tongues with
relatively low proficiency levels, namely A1, A2 and B1 of the
Common European Framework (CEF). For the experiments re-
ported on in this paper we used the read speech material.

The material is obtained from 45 speakers reading the same
set of phonetically rich sentences. In total there are 3669 chunks
with a duration ranging from 5 to 15 seconds. Orthographic
transcriptions were manually created and include fluency phe-
nomena such as filled pauses, restarts and repetitions. From
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Figure 1: Dutch vowel chart

κ intra T1 0.975
κ intra T2 0.948
κ inter T1 − T2 0.913

Table 1: Transcription correction statistics

these orthographic transcriptions, phonetic transcriptions were
automatically generated using a pronunciation lexicon with na-
tive and non-native pronunciation variants. Phonetic transcrip-
tions for words which contain disfluencies were manually cre-
ated.

Because the automatically generated phonetic transcription
can contain errors, we had two transcribers manually correct the
phonetic transcriptions on the word level. They were instructed
to change the phonetic transcription whenever they thought that
an error had been made. For this correction, only the SAMPA
symbols for Dutch were used.

Chunks were presented in a random order. 10% of the
material was corrected by both transcribers and another 10%
was transcribed twice by the same transcriber in order to cal-
culate the inter and intra transcriber agreement, respectively.
These agreement scores are shown in Table 1. Both transcribers
changed less than 10% of the segments, and there is quite some
overlap in the segments they changed, which explains the high
agreement levels.

5. Method
5.1. Phonetic Time Alignment

Firstly, an alignment between a canonical phonetic transcription
using the CGN pronunciation lexicon [17] and the speech sig-
nal was created. This canonical transcription represents how the
words should have been pronounced in Standard Dutch. Sec-
ondly, an alignment between the manually corrected phonetic
transcription and the speech signal was created. The manually
corrected transcription represents how the words have been re-
alized.

The alignments were created by doing a Viterbi alignment
with acoustic models trained using the SPRAAK package [18].
47 3-state monophone Gaussian Mixture Models (GMM) were
trained with native read speech material from the CGN speech
database. For preprocessing purposes the input speech, sam-
pled at 16kHz, is first divided into overlapping 32ms Hamming
windows with a 10ms shift and pre-emphasis factor of 0.95. 12
Mel-frequency cepstral coefficients (MFCCs) plus C0, and their
first and second order derivatives were calculated and cepstral
mean subtraction (CMS) was applied.

The quality of these segmentations was checked semi-
automatically. We observed that word-internal disfluencies
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caused problems in the segmentation. These chunks could be
detected relatively easily by spotting extremely long segments
at the end of a chunk that were labelled as silence and that had
low average acoustic likelihoods. We cleaned up the material
by removing the 948 chunks that met these criteria.

In order to determine whether a certain vowel in the canon-
ical transcription was correctly realized we checked whether
more than 50% of the segment duration, as established in the
canonical segmentation, contained the same vowel in the seg-
mentation created from the manually corrected transcription. If
this was not the case, then the vowel was flagged as incorrectly
pronounced. Note that in this way, problems in the segmenta-
tion could lead to virtual pronunciation errors, which was the
main reason to delete problematic chunks.

5.2. Likelihood Ratio Calculation

For the calculation of likelihood ratios for all vowel segments
in the canonical transcription, we used the same monophone
acoustic models with which we performed the Viterbi align-
ment. We calculated these likelihood ratios as:

∀v ∈ V : LLRvt
v =

log{P(O|vt)} − log{P(O|v)}
dur

(4)

where O is the observation matrix, vt the target vowel
sound and V the set of Dutch vowel phonemes. We will call
these likelihood ratios LLRvt

v vowel scores. The likelihoods of
“competing” vowel sounds P(O|v) are simplified by following
the same state level segmentation as the Viterbi path that was
calculated for the target phone. That is, the competing vowels v
switch states at the same times as the target vowel vt.

Following Eq. 2, we also calculated the GOP measure,
which we will denote with LLRvt

max. To calculate the likeli-
hood of the optimal phone sequence in the segment we used an
unconstrained free phone recognizer.

5.3. Model Training and Evaluation

Our baseline pronunciation verification system utilizes only the
GOP score LLRvt

max. Our new measure, wGOP, combines the
idividual vowel scores in a logistic regression model:

wGOP (vt) =
1

1 + exp{−(β0 +
∑

v βvLLR
vt
v )} (5)

These models are trained for each vowel phoneme sepa-
rately. In these models, the dichotomous dependent variable,
which represents whether the target phone was correctly or in-
correctly pronounced, is predicted by the variables denoted as
LLRvt

v , i.e. the vowel scores. To train a specific vowel model,
we first extracted the segments for which this vowel appeared
in the canonical transcription as a target phone. The number
of segments per phoneme is shown in Table 2, together with
the percentage of pronunciation errors. We also investigated
whether adding the GOP score in the regression model as a pre-
dictor increased performance.

We trained and tested the models using leave-one-speaker-
out cross-validation within the WEKA package [19]. That is,
the βv coefficients are first optimized using all segments of the
first 44 speakers and afterwards tested on the segments of the re-
maining speaker. This is repeated until all segments are tested.
The coefficients indicate to what extent the likelihood of a cer-
tain competing vowel is important in predicting whether the re-
alized phone was correctly or incorrectly pronounced.

We evaluated the GOP score, the wGOP score and their
combination using the equal error rate (EER), which is the point

phoneme #inst %errors GOP wGOP Comb
2: 235 44.68 32.34 24.69 + 25.55 +
9y 397 43.83 19.92 15.61 + 14.58 +
Ei 1204 40.78 26.42 22.60 + 22.18 +
Y 738 35.10 24.38 20.86 + 20.16 +
o: 1619 34.03 41.66 32.03 + 31.57 +
e: 1757 31.30 23.62 23.14 + 20.59 +
y 361 29.36 26.35 24.61 + 24.42 +
I 1715 29.16 29.13 24.42 + 21.40 +
A 2730 27.77 31.16 28.55 + 28.02 +
E 1695 17.05 25.57 24.45 + 22.91 +
i: 1637 16.56 23.70 24.29 - 23.26 +
a: 2131 10.00 29.65 22.35 + 22.58 +
Au 404 7.67 32.35 45.10 - 44.97 -
u 563 6.75 23.56 44.84 - 42.29 -
O 1426 4.98 33.13 44.53 - 34.10 -

Table 2: Overall results of the GOP measure and the weighted
GOP score. Column descriptions: (1) Target phone, (2) Num-
ber of instances, (3) Percentage of incorrectly realized phones,
(4) EER using GOP, (5) EER using wGOP, (6) Sign of EER dif-
ference between GOP and wGOP (7) EER using the combiation
of GOP and wGOP (8) Sign of EER difference between GOP
and the combination of GOP and wGOP.

on the error curve where the false acceptance rate is equal to the
false rejection rate.

6. Results
The EERs for each vowel are shown in Table 2. This list is or-
dered by the percentage of pronunciation errors per vowel. For
the vowels for which the EER of wGOP measure is lower than
the EER of the GOP measure, the improvement is 4.26% on
average. This is not the case for /Au/, /u/, /O/ and /i:/, target
vowels with very low percentages of pronunciation errors. Be-
cause the number of pronunciation errors for these phonemes is
low, apparently no reliable regression models could be trained
and the resulting EERs are therefore higher than those obtained
using only the GOP measure. For vowels with many pronun-
ciation errors and sufficient training material, our new method
yields a substantial increase in performance. Combining the
two methods is only beneficial for some vowels, most notably
/e:/ and /I/.

To gain insight into these overall results, we investigated
whether the phones that have been incorrectly realized were cor-
rectly rejected by the GOP and wGOP methods (Table 3). We
did this for the three vowels with the highest percentage of pro-
nunciation errors, /2:/, /9y/ and /Ei/, and for their three largest
confusions. Here we see that the phones which are most of-
ten confused with the three targets — /y/ with /2:/, /Au/ with
/9y/ and /a:/ with /Ei/ — benefit most from our new measure.
Presumably this is caused by the weighting of the vowel scores
based on frequent confusion patterns.

7. Discussion and Conclusions
From the results of the experiments we carried out we can con-
clude that tuning the wGOP measure with enough real non-
native speech data considerably improves its discriminative
ability compared to the GOP measure. An important concern
in using this tuning data is the issue of generalizability to other
speakers and tasks.

We trained the models speaker-independently, and the
speakers in our material have widely varying L1s such as Turk-
ish, Arabic, Spanish, Chinese, Persian, Hebrew, English etc.
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target realized %of errors GOP wGOP
2: y 32.38 18.10 23.81
2: @ 20.00 13.33 13.33
2: Y 18.10 8.57 10.48
9y Au 69.54 59.77 65.52
9y a: 7.47 3.45 2.87
9y A 5.75 4.02 4.59
Ei a: 58.05 44.60 50.30
Ei j 18.53 11.61 12.63
Ei e: 8.35 5.91 3.87

Table 3: Distribution of realized phones in the correct rejects for
the target phonemes /2:/, /9y/ and /Ei/. Column descriptions: (1)
Target phoneme, (2) Realized phoneme, (3) Percentage of the
total number of incorrectly pronounced phones for the target
phoneme, (4) %correct rejects (%CR) at EER using GOP, (5)
%CR at EER using wGOP.

Although these languages have a different phonology, appar-
ently there is some systematicity in the error patterns of these
speakers, at least enough for our measure to profit from it. This
means that some phonemic confusions are quite stable across
speakers. This was also observed in [14], where a number of
phonemic confusions were identified that were common to L2
learners with varying L1s. On the other hand, we think that our
measure could be further improved by using data from specific
L1s or clusters of typologically similar L1s. With enough data
available, our measure could be fine-tuned to the specific con-
fusions that occur within a (type of) L1-L2 pair.

Another important aspect is the kind of task the speakers
have to perform. We used read speech data, where the users
had to read sentences from a computer screen. As stated in
Section 2, there are some obvious phonemic confusions due to
interference with the orthography in this task, which are not
likely to occur when speakers are not reading but have to repeat
spoken utterances. As this might lead to different error patterns,
it follows that the tuning data has to be appropriate for the task
it is employed for.

In our experiments we have treated all pronunciation errors
on equal par, which might not be a valid assumption in all cases.
Consider for example the pronunciation errors of /2:/ as /@/ and
/Y/ (Table 3), which might be considered as less serious than the
error of pronouncing /2:/ as /y/. In such cases one could argue
about how “false” the false accepts of the system are and how
this differs between the different pronunciation errors. Whether
or not we have to treat these and other error patterns differently
is in essence a matter of pedagogy, but ideally the technology
should be able to deal with these requirements.

One way to approach the latter problem would be in the cal-
ibration of the threshold. In this paper we have used the EER as
a measure of discriminative ability, but pedagogically the EER
threshold might not be the optimal threshold. We could however
optimize the threshold in such a way that it minimizes the total
cost of erroneous decisions. This total cost can be calculated by
weighting the different types of errors in a pedagogically sound
way. It is not straightforward how these costs should be quanti-
fied and more research on this topic is needed to investigate this
issue.

In the future we plan to investigate in which ways our
method could be improved. For some vowel sounds discussed
in this paper, this would involve handling their context depen-
dence. Others aspects that could lead to improvement might be
the initial segmentation, on which all local confidence scoring
heavily depends, and speaker adaptation of the HMM models.
Also we would like to investigate how our method generalizes

to other sounds, such as consonants.
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